一、数据增强
在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。
常见的修改策略包括以下几类
1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转
2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克
3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等
此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np # 设置中文字体支持 plt.rcParams["font.family"] = ["SimHei"] plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 # 检查GPU是否可用 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 1. 数据预处理 # 训练集:使用多种数据增强方法提高模型泛化能力 train_transform = transforms.Compose([ # 随机裁剪图像,从原图中随机截取32x32大小的区域 transforms.RandomCrop(32, padding=4), # 随机水平翻转图像(概率0.5) transforms.RandomHorizontalFlip(), # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化 transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # 随机旋转图像(最大角度15度) transforms.RandomRotation(15), # 将PIL图像或numpy数组转换为张量 transforms.ToTensor(), # 标准化处理:每个通道的均值和标准差,使数据分布更合理 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) # 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原 test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) # 2. 加载CIFAR-10数据集 train_dataset = datasets.CIFAR10( root='./data', train=True, download=True, transform=train_transform # 使用增强后的预处理 ) test_dataset = datasets.CIFAR10( root='./data', train=False, transform=test_transform # 测试集不使用增强 ) # 3. 创建数据加载器 batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)二、CNN模型
卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可
1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。
2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。
3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度
4. 步长(stride):卷积核的滑动步长,默认为1。
# 4. 定义CNN模型的定义(替代原MLP) class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # 继承父类初始化 # ---------------------- 第一个卷积块 ---------------------- # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素 self.conv1 = nn.Conv2d( in_channels=3, # 输入通道数(图像的RGB通道) out_channels=32, # 输出通道数(生成32个新特征图) kernel_size=3, # 卷积核尺寸(3x3像素) padding=1 # 边缘填充1像素,保持输出尺寸与输入相同 ) # 批量归一化层:对32个输出通道进行归一化,加速训练 self.bn1 = nn.BatchNorm2d(num_features=32) # ReLU激活函数:引入非线性,公式:max(0, x) self.relu1 = nn.ReLU() # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # stride默认等于kernel_size # ---------------------- 第二个卷积块 ---------------------- # 卷积层2:输入32通道(来自conv1的输出),输出64通道 self.conv2 = nn.Conv2d( in_channels=32, # 输入通道数(前一层的输出通道数) out_channels=64, # 输出通道数(特征图数量翻倍) kernel_size=3, # 卷积核尺寸不变 padding=1 # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后) ) self.bn2 = nn.BatchNorm2d(num_features=64) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:16x16→8x8 # ---------------------- 第三个卷积块 ---------------------- # 卷积层3:输入64通道,输出128通道 self.conv3 = nn.Conv2d( in_channels=64, # 输入通道数(前一层的输出通道数) out_channels=128, # 输出通道数(特征图数量再次翻倍) kernel_size=3, padding=1 # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后) ) self.bn3 = nn.BatchNorm2d(num_features=128) self.relu3 = nn.ReLU() # 复用激活函数对象(节省内存) self.pool3 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:8x8→4x4 # ---------------------- 全连接层(分类器) ---------------------- # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维 self.fc1 = nn.Linear( in_features=128 * 4 * 4, # 输入维度(卷积层输出的特征数) out_features=512 # 输出维度(隐藏层神经元数) ) # Dropout层:训练时随机丢弃50%神经元,防止过拟合 self.dropout = nn.Dropout(p=0.5) # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数) self.fc2 = nn.Linear(in_features=512, out_features=10) def forward(self, x): # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸) # ---------- 卷积块1处理 ---------- x = self.conv1(x) # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸) x = self.bn1(x) # 批量归一化,不改变尺寸 x = self.relu1(x) # 激活函数,不改变尺寸 x = self.pool1(x) # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2) # ---------- 卷积块2处理 ---------- x = self.conv2(x) # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸) x = self.bn2(x) x = self.relu2(x) x = self.pool2(x) # 池化后尺寸:[batch_size, 64, 8, 8] # ---------- 卷积块3处理 ---------- x = self.conv3(x) # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸) x = self.bn3(x) x = self.relu3(x) x = self.pool3(x) # 池化后尺寸:[batch_size, 128, 4, 4] # ---------- 展平与全连接层 ---------- # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048] x = x.view(-1, 128 * 4 * 4) # -1自动计算批量维度,保持批量大小不变 x = self.fc1(x) # 全连接层:2048→512,尺寸变为[batch_size, 512] x = self.relu3(x) # 激活函数(复用relu3,与卷积块3共用) x = self.dropout(x) # Dropout随机丢弃神经元,不改变尺寸 x = self.fc2(x) # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits) return x # 输出未经过Softmax的logits,适用于交叉熵损失函数 # 初始化模型 model = CNN() model = model.to(device) # 将模型移至GPU(如果可用)上述定义CNN模型中:
1. 使用三层卷积+池化结构提取图像特征
2. 每层卷积后添加BatchNorm加速训练并提高稳定性
3. 使用Dropout减少过拟合
可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。
2.1 batch归一化
Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。
卷积操作常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差
旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。
通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。
1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;
2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。
深度学习的归一化有2类:
1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。
2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。
ps:这个操作在结构化数据中其实是叫做标准化,但是在深度学习领域,习惯把这类对网络中间层数据进行调整分布的操作都叫做归一化 。
2.2 特征图
卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度
2.3 调度器
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器 # 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。 # 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step() scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, # 指定要控制的优化器(这里是Adam) mode='min', # 监测的指标是"最小化"(如损失函数) patience=3, # 如果连续3个epoch指标没有改善,才降低LR factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5) )ReduceLROnPlateau调度器适用于当监测的指标(如验证损失)停滞时降低学习率。是大多数任务的首选调度器,尤其适合验证集波动较大的情况
这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。
常见的优化器有 adam、SGD、RMSprop 等,而除此之外学习率调度器有 lr_scheduler.StepLR、lr_scheduler.ExponentialLR、lr_scheduler.CosineAnnealingLR 等。
可以把优化器和调度器理解为调参手段,学习率是参数
注意,优化器如adam虽然也在调整学习率,但是他的调整是相对值,计算步长后根据基础学习率来调整。但是调度器是直接调整基础学习率。
# 5. 训练模型(记录每个 iteration 的损失) def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs): model.train() # 设置为训练模式 # 记录每个 iteration 的损失 all_iter_losses = [] # 存储所有 batch 的损失 iter_indices = [] # 存储 iteration 序号 # 记录每个 epoch 的准确率和损失 train_acc_history = [] test_acc_history = [] train_loss_history = [] test_loss_history = [] for epoch in range(epochs): running_loss = 0.0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # 移至GPU optimizer.zero_grad() # 梯度清零 output = model(data) # 前向传播 loss = criterion(output, target) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新参数 # 记录当前 iteration 的损失 iter_loss = loss.item() all_iter_losses.append(iter_loss) iter_indices.append(epoch * len(train_loader) + batch_idx + 1) # 统计准确率和损失 running_loss += iter_loss _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() # 每100个批次打印一次训练信息 if (batch_idx + 1) % 100 == 0: print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} ' f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}') # 计算当前epoch的平均训练损失和准确率 epoch_train_loss = running_loss / len(train_loader) epoch_train_acc = 100. * correct / total train_acc_history.append(epoch_train_acc) train_loss_history.append(epoch_train_loss) # 测试阶段 model.eval() # 设置为评估模式 test_loss = 0 correct_test = 0 total_test = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() _, predicted = output.max(1) total_test += target.size(0) correct_test += predicted.eq(target).sum().item() epoch_test_loss = test_loss / len(test_loader) epoch_test_acc = 100. * correct_test / total_test test_acc_history.append(epoch_test_acc) test_loss_history.append(epoch_test_loss) # 更新学习率调度器 scheduler.step(epoch_test_loss) print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%') # 绘制所有 iteration 的损失曲线 plot_iter_losses(all_iter_losses, iter_indices) # 绘制每个 epoch 的准确率和损失曲线 plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history) return epoch_test_acc # 返回最终测试准确率 # 6. 绘制每个 iteration 的损失曲线 def plot_iter_losses(losses, indices): plt.figure(figsize=(10, 4)) plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss') plt.xlabel('Iteration(Batch序号)') plt.ylabel('损失值') plt.title('每个 Iteration 的训练损失') plt.legend() plt.grid(True) plt.tight_layout() plt.show() # 7. 绘制每个 epoch 的准确率和损失曲线 def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss): epochs = range(1, len(train_acc) + 1) plt.figure(figsize=(12, 4)) # 绘制准确率曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_acc, 'b-', label='训练准确率') plt.plot(epochs, test_acc, 'r-', label='测试准确率') plt.xlabel('Epoch') plt.ylabel('准确率 (%)') plt.title('训练和测试准确率') plt.legend() plt.grid(True) # 绘制损失曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_loss, 'b-', label='训练损失') plt.plot(epochs, test_loss, 'r-', label='测试损失') plt.xlabel('Epoch') plt.ylabel('损失值') plt.title('训练和测试损失') plt.legend() plt.grid(True) plt.tight_layout() plt.show() # 8. 执行训练和测试 epochs = 20 # 增加训练轮次以获得更好效果 print("开始使用CNN训练模型...") final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs) print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%") # # 保存模型 # torch.save(model.state_dict(), 'cifar10_cnn_model.pth') # print("模型已保存为: cifar10_cnn_model.pth")三、对模型进行调整
# 实验2:基础CNN + StepLR(固定步长衰减) model2 = CNN_Base().to(device) criterion2 = nn.CrossEntropyLoss() optimizer2 = optim.Adam(model2.parameters(), lr=0.001) scheduler2 = optim.lr_scheduler.StepLR(optimizer2, step_size=3, gamma=0.5) # 每3epoch衰减50% print("\n===== 实验2:基础CNN + StepLR =====") results_dict["基础CNN+StepLR"] = train_model( model2, train_loader, test_loader, criterion2, optimizer2, scheduler2, device, epochs, "实验2" ) # 实验3:轻量化CNN + ReduceLROnPlateau model3 = CNN_Light().to(device) criterion3 = nn.CrossEntropyLoss() optimizer3 = optim.Adam(model3.parameters(), lr=0.001) scheduler3 = optim.lr_scheduler.ReduceLROnPlateau(optimizer3, mode='min', patience=2, factor=0.5) print("\n===== 实验3:轻量化CNN + ReduceLROnPlateau =====") results_dict["轻量化CNN+ReduceLROnPlateau"] = train_model( model3, train_loader, test_loader, criterion3, optimizer3, scheduler3, device, epochs, "实验3" )===== 各实验最终测试准确率汇总 ===== 基础CNN+ReduceLROnPlateau: 76.71% 基础CNN+StepLR: 77.13% 轻量化CNN+ReduceLROnPlateau: 72.44%图 1:不同配置下的 acc 对比
- 横轴(Epoch):训练轮次,从 1 到 10;
- 纵轴(准确率):模型预测正确的比例(%);
- 曲线分组:
- 红色系(基础 CNN+StepLR):训练 / 测试准确率提升最快,最终测试准确率接近 76%(表现最好);
- 蓝色系(基础 CNN+ReduceLROnPlateau):训练 / 测试准确率稳步提升,最终测试准确率约 74%;
- 绿色系(轻量化 CNN+ReduceLROnPlateau):训练 / 测试准确率提升相对平缓,最终测试准确率约 68%(表现稍弱)。
图 2:不同配置下的 loss 对比
- 横轴(Epoch):训练轮次,从 1 到 10;
- 纵轴(损失值):模型预测结果与真实值的误差(值越小越好);
- 曲线分组:
- 红色系(基础 CNN+StepLR):训练 / 测试损失下降最快,最终测试损失最低(和 acc 结果对应,表现最优);
- 蓝色系(基础 CNN+ReduceLROnPlateau):训练 / 测试损失稳步下降,最终测试损失略高于红色系;
- 绿色系(轻量化 CNN+ReduceLROnPlateau):训练 / 测试损失下降较慢,且中间有波动,最终测试损失最高(和 acc 结果对应,表现稍弱)。
结论
在这 3 种配置中,“基础 CNN+StepLR” 的学习率策略效果最好:训练过程中准确率提升快、损失下降明显,最终测试集的准确率和损失都优于另外两种配置;而 “轻量化 CNN” 虽然模型更简洁,但性能略逊于基础 CNN 架构。
勇闯python的第42天@浙大疏锦行