news 2026/1/10 11:29:27

【故障诊断】稀疏贝叶斯学习方法断裂转子杆故障诊断【含Matlab源码 14740期】

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
【故障诊断】稀疏贝叶斯学习方法断裂转子杆故障诊断【含Matlab源码 14740期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、稀疏贝叶斯学习方法断裂转子杆故障诊断

1 稀疏贝叶斯学习方法概述

稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)是一种基于贝叶斯理论的机器学习方法,通过引入稀疏性先验,能够自动选择相关特征并减少模型复杂度。在故障诊断领域,SBL适用于高维数据中的特征提取和模式识别。

2 断裂转子杆故障诊断流程

数据采集与预处理
通过振动传感器采集转子杆运行时的振动信号,对信号进行去噪、归一化等预处理。常用方法包括小波变换或经验模态分解(EMD)消除噪声干扰。

特征提取
从预处理后的信号中提取时域(如均方根、峰值)和频域(如FFT频谱、包络谱)特征。高阶统计量(如峭度、偏度)可进一步捕捉非线性特性。

稀疏贝叶斯模型构建
采用高斯先验和自动相关性确定(ARD)技术构建稀疏模型。似然函数通常假设为高斯分布,超参数通过证据最大化或变分推断优化。模型形式为:
[
p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w},\beta^{-1}\mathbf{I})
]
其中(\mathbf{w})为权重向量,(\beta)为噪声精度。

故障分类与定位
利用训练好的模型对新样本进行预测,稀疏权重指示关键故障特征。通过阈值判定或聚类分析确定断裂位置,如支持向量机(SVM)或决策树作为后端分类器。

3 关键参数优化

  • 核函数选择:线性核适用于简单故障模式,RBF核处理非线性特征。
  • 超参数调整:采用交叉验证优化正则化参数和噪声水平,避免过拟合。
  • 稀疏度控制:调整ARD先验的尺度参数,平衡模型复杂度与准确性。

4 性能评估指标

  • 分类准确率:混淆矩阵计算精确率、召回率。
  • 实时性:测试单样本推理时间,满足在线监测需求。
  • 鲁棒性:通过添加噪声或缺失数据验证稳定性。

5 应用案例

某工业离心压缩机转子裂纹检测中,SBL方法将特征维度从50降至8,故障识别率提升至98.7%,误报率低于2%。对比传统SVM,计算效率提高40%。

6 注意事项

  • 数据不平衡时需采用过采样或代价敏感学习。
  • 多故障耦合场景需引入分层稀疏模型。
  • 定期更新模型以适应设备退化特性。

该方法通过特征级稀疏性实现高精度诊断,适用于复杂工业环境的早期故障预警。

⛄二、部分源代码和运行步骤

1 部分代码

2 运行步骤
(1)直接运行main即可一键出图。

⛄三、运行结果






⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1]钱虹,徐军,祁云杰.基于最优模态分量包络谱的滚动轴承故障诊断[J].噪声与振动控制. 2025

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/8 14:27:57

揭秘Open-AutoGLM如何实现毫秒级快递轨迹更新:技术架构全解析

第一章:揭秘Open-AutoGLM快递轨迹追踪的核心价值在现代物流体系中,快递轨迹的实时性与准确性直接影响用户体验与运营效率。Open-AutoGLM作为一种基于自动化大语言模型(AutoGLM)的开放架构,为快递轨迹追踪提供了智能化的…

作者头像 李华
网站建设 2026/1/4 2:59:02

换个角度看境外支付系统:警惕金融风险之安全测试实践

支付系统,这个名词相信生活在当下社会的大家应该都不在陌生了吧,他时时刻刻充斥在我们的日常生活中,哪里有交易发生,哪里就有它的身影。 其实直白的来说,支付系统是扮演着连接消费者、商家、银行和其他金融机构之间的…

作者头像 李华
网站建设 2026/1/1 20:05:25

Home-Assistant智能家居平台搭建与远程控制

前言 Home Assistant是目前最强大的开源智能家居平台,支持上千种设备和服务的集成。本文将介绍如何搭建Home Assistant并实现远程控制。 一、为什么选择Home Assistant 1.1 对比其他方案 特性Home Assistant米家HomeKit开源✅❌❌设备支持2000仅小米生态较少自动…

作者头像 李华
网站建设 2025/12/27 12:06:14

盲盒小程序定制案例|轻松打造专属盲盒乐园

盲盒小程序定制案例|轻松打造专属盲盒乐园 盲盒小程序全新页面、功能分享 传统与创新结合的新鲜玩法,玩家可以获得新鲜体验感。 核心功能玩法:一番赏、无限赏、登天阶.... 各种惊喜有趣的功能体验,带来视觉体验感的页面&#xff0…

作者头像 李华
网站建设 2026/1/7 14:36:43

【Open-AutoGLM快递轨迹追踪实战】:掌握AI驱动物流监控的5大核心技术

第一章:Open-AutoGLM快递轨迹追踪实战导论在现代物流系统中,实时、精准的快递轨迹追踪已成为提升用户体验与运营效率的核心能力。Open-AutoGLM 作为一款基于大语言模型与自动化推理引擎的开源框架,能够通过自然语言理解与结构化数据解析&…

作者头像 李华