news 2026/2/3 21:58:04

[机器学习-从入门到入土] 拓展-范数

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
[机器学习-从入门到入土] 拓展-范数

[机器学习-从入门到入土] 拓展-范数

个人导航

知乎:https://www.zhihu.com/people/byzh_rc

CSDN:https://blog.csdn.net/qq_54636039

注:本文仅对所述内容做了框架性引导,具体细节可查询其余相关资料or源码

参考文章:各方资料

文章目录

范数

设向量
x = ( x 1 , x 2 , … , x d ) ∈ R d x=(x_1,x_2,\dots,x_d)\in\mathbb{R}^dx=(x1,x2,,xd)Rd

L 0 L_0L0范数 (严格来说不是范数)

非零元素的个数:
∥ x ∥ 0 = # { i ∣ x i ≠ 0 } \|x\|_0 = \#\{i \mid x_i \neq 0\}x0=#{ixi=0}

# ( 某个集合 ) \#(\text{某个集合})#(某个集合): 表示集合中元素的个数

  • 直接度量稀疏性-> 理论上的“理想稀疏约束”
  • 不关心数值大小,只关心“是不是 0”

优化性质:

  • ❌ 非凸
  • ❌ 非连续
  • ❌ NP-hard(组合优化)
L 1 L_1L1范数

稀疏性的凸替身
∥ x ∥ 1 = ∑ i = 1 d ∣ x i ∣ \|x\|_1=\sum_{i=1}^d |x_i|x1=i=1dxi
优化性质:

  • ✅ 凸
  • ❌ 不光滑(0 点不可导)

典型用途:

  • Lasso 回归

    min ⁡ w ∥ y − X w ∥ 2 2 + λ ∥ w ∥ 1 \min_w \|y-Xw\|_2^2+\lambda\|w\|_1minwyXw22+λw1

L 2 L_2L2范数

能量与稳定性
∥ x ∥ 2 = ( ∑ i = 1 d x i 2 ) 1 / 2 \|x\|_2=\left(\sum_{i=1}^d x_i^2\right)^{1/2}x2=(i=1dxi2)1/2
优化性质:

  • ✅ 凸
  • ✅ 光滑
  • ✅ 强凸(数值稳定)

典型用途:

  • Ridge 回归 (岭回归)

    min ⁡ w ∥ y − X w ∥ 2 2 + λ ∥ w ∥ 2 2 w \min_w \|y-Xw\|_2^2+\lambda\|w\|_2^2wminwyXw22+λw22w

L p L_pLp范数

∥ x ∥ p = ( ∑ i = 1 d ∣ x i ∣ p ) 1 / p , p ≥ 1 \|x\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p},\quad p\ge 1xp=(i=1dxip)1/p,p1

  • p pp越小 → 越稀疏,但越难优化
  • p pp越大 → 越平滑,但越不稀疏

严格意义上,只有p ≥ 1 p\ge 1p1时才是“范数”

p几何形状性质
p = 1 p=1p=1菱形强稀疏
1 < p < 2 1<p<21<p<2圆角菱形稀疏 + 稳定
p = 2 p=2p=2平滑、稳定
p → ∞ p\to\inftyp正方形控制最大分量

极限情形:

  • p → 0 p\to 0p0:趋近L 0 L_0L0
  • p → ∞ p\to\inftyp∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \|x\|_\infty=\max_i |x_i|x=maxixi
范数是否凸是否光滑是否产生稀疏典型角色
L 0 L_0L0⭐⭐⭐⭐⭐理想目标
L 1 L_1L1⭐⭐⭐⭐稀疏替代
L 2 L_2L2稳定正则
L n L_nLnn > 1 n>1n>1n > 1 n>1n>1递减折中方案
范数的等值线

在二维情况下:x = ( x 1 , x 2 ) ∈ R 2 x=(x_1,x_2)\in\mathbb{R}^2x=(x1,x2)R2

范数的等值线:

  • ∥ x ∥ p = 1 \|x\|_p = 1xp=1:一条曲线
  • ∥ x ∥ p ≤ 1 \|x\|_p \le 1xp1:这条曲线围成的区域

各范数的情况:

  • L 0 L_0L0: x轴与y轴
    (当y有值时x=0, 当x有值时y=0)
  • L 1 L_1L1: 菱形
    (顶点是( − 1 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 0 , − 1 ) (-1,0),(1,0),(0,1),(0,-1)(1,0),(1,0),(0,1),(0,1))
  • L 2 L_2L2: 圆
    (经过( − 1 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 0 , − 1 ) (-1,0),(1,0),(0,1),(0,-1)(1,0),(1,0),(0,1),(0,1))

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/2 14:27:39

GLM-4.6V-Flash-WEB模型在教育领域的潜在应用场景

GLM-4.6V-Flash-WEB模型在教育领域的潜在应用场景在今天的在线教育平台上&#xff0c;一个学生上传了一道物理题的截图&#xff1a;“根据这张图&#xff0c;求滑轮组的机械效率。”几秒钟后&#xff0c;AI就给出了分步解析——不仅识别出图中的绳子走向、动滑轮数量和拉力方向…

作者头像 李华
网站建设 2026/1/30 8:30:36

使用Jetson Nano部署GLM-4.6V-Flash-WEB的挑战与解决方案

使用Jetson Nano部署GLM-4.6V-Flash-WEB的挑战与解决方案 在智能设备越来越强调“本地化决策”的今天&#xff0c;如何让大模型走出云端、走进边缘终端&#xff0c;成为开发者关注的核心命题。尤其是多模态视觉语言模型&#xff08;VLM&#xff09;&#xff0c;正逐步从实验室走…

作者头像 李华
网站建设 2026/2/3 13:21:33

零基础入门:用Cursor-Free-VIP开启你的编程之旅

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 创建一个交互式编程学习平台&#xff0c;利用Cursor-Free-VIP帮助新手学习编程。功能包括&#xff1a;1) 基础编程概念教程&#xff1b;2) 交互式代码练习&#xff1b;3) 实时错误…

作者头像 李华
网站建设 2026/1/29 19:43:01

零基础学KETTLE:第一个ETL项目从入门到部署

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 创建一个适合KETTLE新手的入门项目&#xff1a;1.从CSV文件读取销售数据 2.进行简单的数据清洗(去重、格式转换) 3.计算销售总额 4.输出到Excel报表。要求每一步都有详细说明&…

作者头像 李华
网站建设 2026/2/3 11:42:07

VS Code + Git:AI如何提升你的代码管理效率

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 创建一个VS Code扩展&#xff0c;集成AI功能来自动化Git操作。功能包括&#xff1a;1) 智能提交信息生成&#xff08;分析代码变更自动生成描述&#xff09;&#xff1b;2) 冲突预…

作者头像 李华